Code: EC5T2

III B.Tech - I Semester – Regular/Supplementary Examinations October 2018

TRANSMISSION LINES AND WAVE GUIDES (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

11x 2 = 22 M

- 1. a) Draw the equivalent circuit of a two-wire transmission line and list the applications of transmission line.
 - b) Derive the secondary constants for a low loss transmission line.
 - c) What are the types of loading?
 - d) Define and Express the terms Characteristic impedance and input impedance.
 - e) A 100 + j 150 Ω load is connected to a 75 Ω lossless line. Find Γ .
 - f) List the applications of smith chart.
 - g) Design a quarter wave transformer to match a line having impedance 75 Ω to a load of 25 Ω .
 - h) Mention the dominant modes in rectangular and circular waveguides.
 - i) Give the characteristics of TEM waves.
 - j) Define cut-off wavelength in a wave guides.
 - k) Mention the applications of cavity resonators.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) A 25m long lossless transmission line is terminated with a load having an equivalent impedance of 40 + j 30 Ω at 10 MHz. the per-unit length inductance and capacitance of the line are 310.4 nH/m and 38.28 pF/m, respectively. Calculate the input impedance at the sending-end and the mid point of the line. Also plot the variations of the magnitude of the input impedance and its angle as a function of location on the transmission line.
 - b) Describe the losses in transmission lines. 6 M
- 3. a) Determine the condition for lossless transmission line and give the impedances of short circuited and open-circuited at the termination of transmission line. 8 M
 - b) Find the Characteristic impedance, propagation constant and velocity of propagation at f =100 KHz for a lossless transmission line having L= 33 μ H/m and C= 10 nF/m.

8 M

4. a) Explain the significance and utility of $\lambda/8$, $\lambda/4$ and $\lambda/2$ lines. 6 M

- b) A load of 50 j 100 Ω is connected across a 50 Ω line.
 Design a short-circuited stub in order to provide impedance matching between the two at a signal frequency of 30 MHz using smith chart.
 10 M
- 5. a) Describe the conditions of the field vectors at the boundary surface between different media. 8 M
 - b) Discuss about the power losses in wave guide and summarize the necessary expressions. 8 M
- 6. a) A circular waveguide operating in the dominant mode at a frequency of 9 GHz with maximum field strength of 300 V/cm. the internal diameter is 5cm. calculate the maximum power.
 - b) Derive the equations for resonant frequencies (f₀) for rectangular and circular cavity resonators. 8 M